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Abstract
Metals are harmful inorganic pollutants in aquatic environments when their concentrations are higher than expected (or tolerated)
and, in low concentrations, they can lead sublethal genetic injuries. Baseline frequencies of micronucleated cells (MN‰) of three
mangrove crab species were established in a pristine mangrove (Juréia-Itatins Ecological Station, JIES). Aratus pisonii, Ucides
cordatus andGoniopsis cruentata belong to different functional groups, regarding the diet and lifestyle. Overall, the baselineMN
‰ of G. cruentata (1.7 ± 1.2; mean ± sd) was higher than that of A. pisonii (0.9 ± 1.1) and U. cordatus (1.3 ± 0.9). These
differences can be explained by the diet (gl, green leaves; sl, senescent leaves; a, animal items; or their combination) and lifestyle
of these species, as their degree of contact with abiotic compartments (w, water; s, sediment). Aratus pisonii is an arboreal crab
and specialist herbivore, associated with few compartments (w + gl);Ucides cordatus is a digger crab, generalist herbivore, using
three compartments (w + s + sl); andGoniopsis cruentata is a cursorial crab, omnivorous, exploring more compartments (w + s +
sl + a). Thus, using a broader range of compartments and amore diverse diet were correlated with a higher genotoxicity.Metals in
JIES were registered in environmentally safe concentrations but seem to influence the baseline MN‰ in crab species. Higher
genotoxicity was registered in species that interact with more compartments (especially the sediment), a fact that should be
considered in monitoring processes.
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Introduction

Mangroves are one of themost productive and relevant coastal
environments worldwide (Kathiresan and Bingham 2001;
Schaeffer-Novelli et al. 2016; Souza et al. 2018). In Brazil,

they are considered as Permanent Protection Areas (PPAs),
according to the Brazilian Forest Code (see Brasil 2012;
Federal Law 12.651/2012). Despite their well-known ecolog-
ical, economic and social role (Robertson and Duke 1987),
35% of the world’s mangroves have been lost for several
reasons (Valiela et al. 2001), resulting in diversity losses
(Burnside 2018). Thus, mangrove management and preserva-
tion are urgent and crucial issues. Moreover, studies in pristine
mangroves are very scarce and required to better understand
the natural patterns of biological processes.

Metal concentrations have become an important criterion
in the diagnosis of environmental quality due to their toxicity
to biota, persistence in abiotic compartments (water and sed-
iment), and role as indicator of human local disturbance
(Luoma and Rainbow 2008; Abraham and Susan 2017;
Duarte et al. 2017, 2019). These contaminants are difficult
to break down, accumulate in the biota, and can be magnified
through the trophic chains (Rainbow 2007; Pinheiro et al.
2013). Essential metals perform an important role in biologi-
cal systems whereas non-essential are toxic even in trace
amounts (Rainbow 2007).
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Due to the threatening environmental pollution, Brazilian
Conservation Units (UCs) have become even more relevant to
the protection of biodiversity (Bruner et al. 2001; Pinheiro
et al. 2012). Considering the intense human population
growth and loss of natural habitats, these UCs have become
refuges for most of the biota that are intolerant to hu-
man activities, and thus have attracted a global interest
(Kramer et al. 1997; Marques et al. 2017). Studies in
such areas are essential as they help to understand how
an ecologically healthy environment functions (Fraser
and Bernatchez 2001; Duarte et al. 2019).

Since newmonitoring techniques have been developed, the
use of biomarkers has gained prominence in the assessment of
environmental risk in natural populations (Moore et al. 1986;
Depledge and Galloway 2005; Amiard-Triquet et al. 2013;
Araújo et al. 2018). According to these authors, these biolog-
ical assays can detect sublethal effects on organisms exposed
to metal contamination. Biomarkers have been widely applied
in studies with invertebrates, such as mollusks (Klobucar et al.
2003; Pereira et al. 2014; Reguera et al. 2018), annelids
(Gomes et al. 2015; Barrick et al. 2016) and crustaceans, such
as copepods (Raisuddin et al. 2007) and decapods (Boudet
et al. 2013; Duarte et al. 2016, 2017, 2019). Crustaceans, in
particular, have been considered an expressive biological
model by several studies with toxic chemicals (as
metals) that can be absorbed with the food and/or by
contact with contaminated water and sediment (Marsden
and Rainbow 2004; Luoma and Rainbow 2008;
Abraham and Susan 2017; Harris et al. 2019).

Brachyuran crustaceans stand out due to their abundance in
mangroves, where some species are endemics (Ellison 2008).
According to Melo (1996), three crabs species are common in
western Atlantic mangroves (from Florida-USA to the south-
ern region of Brazil): Aratus pisonii (H. Milne Edwards,
1837), a sesarmid crab known as ‘aratu-marinheiro’;
Goniopsis cruentata (Latreille, 1803), a grapsid known as
‘maria-mulata’ or ‘aratu-vermelho’; and Ucides cordatus
(Linnaeus, 1763), the ocypodid ‘uçá-crab’. These species are
characterized by reduced vagility, distinct interactions with
abiotic and biotic compartments, and diverse diets. In Brazil,
U. cordatus has been used as a mangrove sentinel species
(Pinheiro et al., 2013; Duarte et al. 2016, 2017) and the other
two endemic species possibly have a high potential to assess
the environmental quality of the mangroves (Pinheiro et al.
2017), a fact that has not been confirmed.

In crustaceans the absorption of pollutants occurs directly
through the articulation membranes, gills, and by feeding
(Rainbow 2007). Long term exposure to pollutants promotes
negative effects on crustaceans, as some compounds
bioaccumulate in the tissues and may cause malformations
(Pinheiro and Toledo 2010; Lezcano et al. 2015).

In aquatic organisms, pollution may lead to genetic alter-
ations that can be detected through a simple genotoxicity test

such as the micronucleus assay (Carrano and Heddle 1973).
Micronuclei are abnormal cytoplasmic structures formed by
fragmented and/or lost chromosomes after cellular division.
Since they are easily perceptible at any stage of the cell cycle
(Countryman and Heddle 1976), they constitute a quick and
accurate method to detect chromosomic aberrations (Heddle
et al. 1983). This technique has been broadly used in studies
with vertebrates (e. g., fishes: Ahmed et al. 2011; and mam-
malians: Narumi et al. 2012), and also successfully applied to
invertebrates, such as bivalves (Scarpato et al. 1990; Pereira
et al. 2014) and crabs (Pinheiro et al. 2013; Duarte et al. 2016,
2017, 2019). According to Bolognesi and Cirillo (2014) and
Pereira et al. (2014), the micronucleus assay has a great eco-
logical relevance, since it detects genetic damages that can
harm the populations. Thus, studies aiming to characterize
the biological variation of this biomarker in aquatic organisms
are essential, especially in pristine areas, where a better dis-
tinction between normality (baseline) and abnormalities
(Cenov et al. 2018) can bemade. Themicronuclei assay meth-
od quantifies the micronuclei frequency (Pinheiro et al. 2013).
Duarte et al. (2016) indicated that an area considered as
‘Probably Not Impacted’ (well-preserved) has specimens of
U. cordatus showing less than three micronucleated cells for
one thousand analyzed. Therefore, the description of a spe-
cies’ baseline micronuclei frequency allows further compari-
sons between conditions and areas. This technique can be
used as an environmental monitoring tool, to classify areas
according to the species’ responses to metal contamination
by anthropic or natural (‘background’) sources.

Mangrove crab species occupy distinct ecological niches
and have different lifestyles, regarding the diet, feeding fre-
quency, and variety of abiotic and biotic compartments they
explore (e. g., water, sediment, and/or vegetation). Thus, the
combined study of species from different functional groups
can portray a more complete picture of an ecosystem’s quality
(Jha 2008). Some native species of western Atlantic man-
groves (e. g., Goniopsis cruentata by Davanso et al. 2013;
and Ucides cordatus by Pinheiro et al. 2017 and Duarte
et al. 2016, 2017, 2019) have been used to monitor the quality
of mangroves.

This study aimed to establish the baseline frequency of
micronuclei cells (MN‰) of three crab species (Aratus
pisonii, Goniopsis cruentata and Ucides cordatus), and to
evaluate its seasonal variation (summer/rainy vs. winter/dry).
Knowing the genetic baseline of these species is particularly
important in order to establish what would be expected in a
pristine mangrove. These species belong to distinct functional
groups and coexist in the pristine mangroves of Juréia-
Itatins Ecological Station (JIES) in the state of São Paulo,
Brazil. Since they interact with abiotic (water and sediment)
and biotic (distinct food items) compartments in different
ways, a secondary aim was to quantify the metals in these
compartments in order to link the micronuclei baseline with

Page 2 of 1430 Wetlands (2021) 41: 30



diet and lifestyle of the crab’s species. Finally, in order to
validate the assumption that JIES mangroves are pristine, the
metal contamination was also quantified in a well-known pol-
luted mangrove from the same Brazilian region, and used for
comparison. The data obtained here can be used as reference
values and/or compared to other species of the same function-
al groups living in mangroves (Depledge and Fossi 1994).

Materials and Methods

Mangrove Study Area and Sampling

Two samplings, covering two seasons (summer/rainy season:
February 2014; and winter/dry season: August 2014), were
carried out in the state of São Paulo, southeastern region of
Brazil. The mangrove area belongs to the Juréia-Itatins
Ecological Station (JIES) (Fig. 1), a conservation unity inte-
grated to the Conservation Mosaic (São Paulo 2013). The
JIESmangroves occupy 40 km of coastline and harbor several
well-preserved rivers, due to the reduced human contingent
and anthropogenic impacts (Pinheiro et al. 2013). According
to Por et al. (1984), Duleba and Debenay (2003) and Marques
and Duleba (2004), this region has semidiurnal tides (0.1–
1.5 m) and narrow temperature variation. Salinity and pH
are higher in the dry season than in the rainy one. According
to the climatic classification of Köppen-Geiger (Alvares et al.
2014), JIES mangroves are within the tropical humid region,
where the highest average temperature and rainfall occur from
January to March, and the lowest from May to August.

Specimens were captured in three mangrove subareas in the
JIES estuary of river ‘Una do Prelado’, as follow: JUR1 (24°26′
14.4”S; 47°04′34.2”W), JUR2 (24°26′3.8”S; 47°04′32.2”W)
and JUR3 (24°25′48.3”S; 47°04′52.7”W). For standardization
purposes, five individuals of each crab species (A. pisonii,
G. cruentata and Ucides cordatus – Fig. 2) were manually cap-
tured in each subarea and season (n= 15/species/season), all of
them males in intermolt stage (see Pinheiro and Fiscarelli 2001).
This approach avoids the confounding effects of sex and molting
stage, previously reported for other decapod crustaceans (see
Pinheiro et al. 2012). A precision caliper (0.05 mm) was used
to record the body size (CW, carapacewidth), and the individuals
were considered as replicates (n = 30 specimens/species). Only
animals with body size >2/3 of the maximum size (CW) of each
species were included in the study, as follow: CW>17 mm in
A. pisonii, according Leme et al. (2014); CW > 37 mm in
G. cruentata, as informed by Moura and Coelho (2004); and
CW> 64 mm in Ucides cordatus, based on the review by
Pinheiro et al. (2005). The animals were kept individually in
plastic bags (with leaves and twigs of mangrove trees), to avoid
agonistic behaviors during transport. They were transported to
the laboratory in plastic boxes with 1–3 cm of brackish water
(salinity 15), depending of the individual size.

In the laboratory, after the biometry, each crab specimen
was submitted to hemolymph puncture to the confection of
slides used in the analysis of macrolesions evaluation (see
details at ‘Micronucleus assay’ item), following by extraction

Fig. 1 Juréia-Itatins Ecological Station (JIES), state of São Paulo, Brazil.
Location of the threemangroves subareas (JUR1, JUR2 and JUR3), in the
estuary of river ‘Una do Prelado’. Source: Google Earth Image © 2020
DigitalGlobe

Wetlands (2021) 41: 30 Page 3 of 14 30



of tissues of each one to metal quantification (see the
following item). Before the latter procedure (dissection),
each animal was cryo-anesthetized (−20 °C), by submer-
sion in crushed ice for 15 min, followed by euthanasia
(insertion of a forceps or scissors inside the crab mouth
and rotating to disrupt the cerebral ganglia). This is a
recommended procedure but not mandatory because ac-
cording to Brazilian Law for Good Practices and Animal
Welfare, scientific experimentations or projects don’t
need authorization emitted by a specific committee when
non-chordate animals (invertebrates) are sacrificed.

Sampling, Sources of Contamination and Metal
Quantification

In order to assert the environmental quality of JIES man-
groves, the metal concentrations were compared to those of
Cubatão (CUB1: 23°53′02.9“S - 46°21’54.6”W; CUB2:
23°54′02.4“S - 46°22’56.9”W; and CUB3: 23°55′08.0“S -
46°23’04.8”W). Cubatão is located 95 km away from JIES
and is characterized by an intense history of metal contamina-
tion (Pinheiro et al. 2013; Duarte et al. 2016, 2017). In both
mangroves, samples of water and sediment were obtained to
quantify the total concentrations of six metals (Cd, Cu, Pb, Cr,
Mn and Hg), using a specific atomic spectrophotometer (GBC
- 932 AA) after the acid digestion of the samples, according to
Athanasopoulos (1994) and the protocol previously described
by Pinheiro et al. (2013). In each mangrove subarea, three
water samples (100 mL) were collected by suction with a
silicone hose and stored in labeled polyethylene bottles (n =
18: 6 subareas vs. 3 samples). Surface sediments samples (<
10 cm) were collected with nitrile gloves in each studied area
by a composite sampling method, which provide a more ade-
quate resolution to characterize the contamination (Garner
et al. 1988). These samples (500 g) were equally obtained in
the same subareas (n = 18) and kept in labeled polyethylene
bottles, after removal of roots by sieving.

In JIES mangroves the bioaccumulation was studied through
the quantification of metal concentrations in green and senescent
leaves (used by specialist and generalist herbivores, respectively,
and by omnivores), crustacean tissues (used by carnivores and
omnivores), thus representing all sources of contamination.
Leaves of the red-mangrove tree (Rhizophora mangle), in two
maturation stages (gl, green mature; and sl, pre-abscission senes-
cent), were collected following Pinheiro et al. (2012). Twenty
leaves of each stagewere removedwith pruning shears, placed in
labeled plastic bags, transported to the laboratory, and washed to
avoid contamination by atmospheric pollution (1st running wa-
ter: water +5% neutral detergent; 2nd running water: distilled
water + HCl saturated; and finally with distilled water). To eval-
uate the contamination of an animal prey available to omnivore
crabs we used muscle and hepatopancreas samples from Ucides
cordatus (n = 3 ind./subarea).

The total concentrations of Cd, Cu, Pb, Cr, Mn and Hg were
determined in each sample (water, sediment, leaves ofR.mangle,
and tissues ofU. cordatus) using the mineralization method with
HNO3 at 65%, according to Basset et al. (1981). Analyses were
optimized by hollow cathode lamps (LCO), according to the
metallic element, and samples were read using a GBC-932 AA
atomic absorption spectrophotometer (Athanasopoulos 1994).
The equipment was calibrated with metal stock solutions
(1000 ppm). Metal concentration was expressed in a dry weight
basis. The units of measurement and detection limits were as
follows: Cd < 0.01 μg/g; Cu and Mn< 0.02 μg/g; Pb and Cr <
0.05 μg/g; and Hg <1.10−6 μg/g.

Fig. 2 Mangrove crab species and their lifestyle and feeding habit. A)
Aratus pisonii (H. Milne Edwards, 1877), an arboreal sesarmid crab that
feeds on green leaves; B) Ucides cordatus (Linnaeus, 1763), a digger
ocypodid crab that feeds on senescent leaves; and C) Goniopsis
cruentata (Latreille, 1803), an omnivore cursorial grapsid crab that
feeds on vegetal and animal items, under decomposition (or not)

Page 4 of 1430 Wetlands (2021) 41: 30



Micronucleus Assay

A hemolymph sample (0.2 mL) was taken from each crab
using a hypodermic syringe (1 mL) coupled to a 21-gauge
needle to avoid damage to the hemocytes, as recommended
by Nudi et al. (2010). The method described in Scarpato et al.
(1990) and adapted to brachyurans by Pinheiro et al. (2013)
was used to prepare slides of hemolymph (n = 5/specimen).
The slides were air-dried (20 min.), immersed in Carnoy so-
lution (3:1, methanol: acetic acid) for cell fixation (20 min.),
and air-dried again. Each slide was stained (15 min.) with
Giemsa solution (2%) (Na2HPO4 + KH2PO4, pH 6.8), washed
with deionized water and air-dried. In order to identify the
number of micronucleated cells per 1000 analyses (MN‰),
the slides were observed under a Zeiss® optical microscope
(1000 x). Notes about the nuclear formations were taken ac-
cording to the characteristics proposed originally by
Countryman and Heddle (1976).

Statistical Analyses: Crab Lifestyle and Genetic
Damage

The homogeneity and normality of the variances were
inspected using Levene’s (L) and Shapiro-Wilk’s (SW) tests,
respectively. The confirmation of normality (P > 0.05)
allowed the use of parametric tests. Thus, the means were
compared by ANOVA (subarea factor) and t-tests (species
and seasons) (Zar 1999; Faraway 2002).

Micronuclei frequencies (MN‰) were compared by a
three-way factorial ANOVA to test the significance of the
effects of three sources of variation (factors) – two seasons
(SE): summer/rainy and winter/dry; three species (SP):
G. cruentata, A. pisonii and U. cordatus; and three subareas
(LO): JUR1, JUR2 and JUR3. We also included in the model
the respective first- and second-order interactions. Data were
analyzed in R Version 3.3.2 (Ihaka and Gentleman 1996),
considering a statistical significance level of 5%. In all cases,
the multiple comparison of means was followed by a Tukey’s
honestly significant difference test (Zar 1999).

We investigated whether the baseline micronuclei frequen-
cy was influenced by metals (even if present in safe concen-
trations), or natural and intrinsic to each crab species. For this
purpose, the concentration of the six metals was measured in
each environmental/food compartment used by the crabs in
JIES, which was assumed based on their lifestyles: 1) A.
pisonii (water + green leaves), are primarily herbivorous
sesarmid species that feed mainly on green leaves (Erickson
et al. 2003) that can be easily picked from the tree canopy.
Being an arboreal sesarmid species, they contact with the sed-
iment is very limited, but they are exposed to the water that is
used to renew the oxygen in the gill chambers (Erickson et al.
2008; Riley et al. 2014); 2) U. cordatus (water + sediment +
senescent leaves), is a digger ocypodid species that has a close

contact with the sediment and water during the mangrove
flooding; they are not adapted to climb trees and access green
leaves. As detritivores (Christofoletti et al. 2013) they feed on
senescent leaves available on the sediment during lower tides
(Duarte et al. 2017); and 3) G. cruentata (water + sediment +
senescent leaves + animals), is a typical omnivorous cursorial
grapsid species and a generalist feeder which exploits most of
the items available on the mangrove sediment (Gomes et al.
2011; Ferreira et al. 2013). As their diet includes live and dead
animals, we consideredU. cordatus as a prey ofG. cruentata.
The contamination of this compartment was taken as the sum
of metal concentration in two tissues: hepatopancreas (main
detoxification organ of decapod crustaceans – see Rainbow
2007 and Eisler 2010) and muscles (accumulation already
reported by Pinheiro et al. 2012).

Based on the known distinct toxicity potential of metals
and potential risk to the aquatic environment (i. e., Hg >
Cu > Cd > Pb > Mn > Cr; adapted according to studies
performed by Wong and Bradshaw 1981, Sinha et al. 1993,
Luoma and Rainbow 2008 and Eisler 2010), we propose the
application of a weighted toxicity potential, represented by the
hierarchical sequence 3 > 2.5 > 2 > 1.5 > 1 > 0.5 (relative to
the previous sequence of metals). These results were then
multiplied by a correction factor, according to the type: 1x
for essential metals (Cu, Mn and Cr) and 2x for non-
essential metals (Hg, Cd and Pb). Taking into account that
concentrations of metals have different orders of magnitude,
the data were standardized by the equation,

MCi ¼ log Mi*T i*Cið Þ þ 1½ �

where: MCi, log-transformed concentration of each ‘ith’-
metal in each compartment; Mi, concentration of the ‘ith’-metal
(in μg/mL or μg/g) in each compartment; Ti, weighed toxicity
potential of the ‘ith’-metal; and Ci, correction factor of the ‘ith’-
metal. A total standardized concentration value (MCS) was cal-
culated, comprising the sum ofMCi by compartment, posteriorly
summed per species, according to the compartments used by
them. A figure was made to better illustrate the relationship be-
tween the exposure of crab species to the metals (MCS) and their
species-specific genetic damage (MN‰).

In the analysis of the total concentrations of six metals in
the water and sediments of JIES and Cubatão, the normality of
the data was evaluated with the Shapiro-Wilk test (SW). Then,
the concentrations were compared using non-parametric
(Mann-Whitney, Z) or parametric (t-test) tests (Zar 1999).
The results were compared with the reference values
established by CONAMA (resolution n° 357/2005 – Brasil
2005), and North American (EPA 2017) and European
Council (DIRECTIVE 2008/105/EC 2008) legislation, for es-
tuarine waters, and by Environmental Canada (1999), for sed-
iments (see PEL, Probable Effect Level; and TEL, Threshold
Effect Level).
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Results

Themetal concentrations in the water, sediment and green and
senescent leaves of both mangroves (JIES and Cubatão) were
not normally distributed (SW≤0.95, p > 0.05), requiring a
comparison by non-parametric tests (KW, Kruskal-Wallis).

The metal concentrations in the water samples of JIES man-
groves were below the detection limits, in contrast with
Cubatão (Table 1). Sediment samples from Cubatão man-
groves were contaminated by Cd and Pb (non-essential metals),
which were only found in this area. The concentration of Hg
was 1.8x higher than in JIES. On the other hand, the concen-
trations of two essential metals (see Cr and Mn, Table 1) were

higher in the sediments of JIES. The inverse occurred with
Copper, which was 2.3x higher in Cubatão. Copper concentra-
tions in the green and senescent leaves were similar, and 1.7 to
2.9x higher in Cubatão, respectivelly. In contrast Mn concen-
trations were 56.5 to 69.5x higher in JIES. In Cubatão, the
tissues of U. cordatus were significantly contaminated by Cu
(2.0x higher than in JIES), while the concentration of Mn and
Hg was similar in the studied mangroves.

Table 1 shows the MCi per metal and per compartment
(environment: water and sediment; food item: green leaves,
senescent leaves and animal tissues) as well as the MCS of
each compartment in JIES. These data corroborated our initial
assumption that JIES mangroves are pristine, given the lower

Table 1 Concentration of metals (in μg/mL or μg/g) per compartment
(environment: water and sediment; diet item: green leaves, senescent
leaves and animal), recorded in the mangroves of Juréia-Itatins
Ecological Station (JIES) and Cubatão, in the state of São Paulo, Brazil.
Abbreviations: x, mean; se, standard error; Z, Mann-Whitney test; p,

statistical significance; MCi, log-transformed concentration of the ‘ith’-
metal, based on the equation MCi = log[(Mi * Ti * Ci) + 1]; Mi, ‘ith’-
metal concentration (in μg/mL or μg/g); Ti, toxicity potential factor of the
‘ith’-metal; Ci, correction factor to ‘ith’-metal type; MCS, MCi sum of
each compartment; and nd, not detectable

Compartment (Environmetal or Food) Metals JIES
x±se

Cubatão
x±se

Z p JIES’s Metal Concentration

MCi MCS

Water Cu nd 0.013±0.003 – – 0 0.00
Cr nd nd – – 0

Mn nd 0.0027±0.0002 – – 0

Cd nd nd – – 0

Pb nd 0.18±0.01 – – 0

Hg nd nd – – 0

Sediment Cu 2.47±0.10 5.76±0.44 * 3.576 0.0004 0.86 6.52
Cr 18.24±0.41 8.00±0.40 −3.576 0.0004 1.01

Mn 77.81±21.18 0.72±0.12 −3.576 0.0004 1.90

Cd nd 0.88±0.03 – – 0

Pb nd 9.74±0.64 – – 0

Hg 92.53±12.19 166.10±9.64 3.488 0.0005 2.75

Green Leaves Cu 0.72±0.10 2.13±0.22 3.576 0.00035 0.45 3.02
Cr 3.69±0.14 nd – – 0.45

Mn 130.64±12.26 1.88±0.17 −3.576 0.0004 2.12

Cd nd 0.22±0.01 – – 0

Pb nd 1.86±0.15 – – 0

Hg nd nd – – 0

Senescent Leaves Cu 0.58±0.09 0.99±0.05 2.428 0.0152 0.39 2.91
Cr 3.75±0.47 nd – – 0.46

Mn 114.05±13.55 2.02±0.09 −3.576 0.0004 2.06

Cd nd 0.23±0.02 – – 0

Pb nd 1.95±0.15 – – 0

Hg nd nd – – 0

Animal Cu 6.74±0.70 13.08±0.48 3.576 0.0004 1.25 3.84
Cr nd nd – – 0

Mn 1.79±0.20 1.88±0.24 0.353 0.7239 0.45

Cd nd nd – – 0

Pb nd nd – – 0

Hg 22.63±9.04 10.28±1.76 −0.397 0.6911 2.14

* bold numbers represent contrasting and higher values with statistical difference
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metal concentrations in almost all compartments. Also, between
Cubatão and JIES there were the significant differences in Cu
and Hg in the sediment, Cu in green/senescent leaves and in
animal tissues (P < 0.05). Water contamination by metals in
JIES was below the detection limits (MCS= 0), while the sedi-
ment had the highest weighted toxicity potential (MCS= 6.52),
about twice the value of each food compartment (MCS ranging
from 2.91, in senescent leaves to 3.84, in the animal tissues).

The metal concentrations (%) of specific compartments were
evaluated in order to understand their potential toxicity (Fig. 3).
These compartments were either environmental (w, water; s,
sediment) or part of the crab’s diet (gl, green leaves; sl, senescent
leaves; and a, animal tissues). The results were as follows:
Copper, a > s > (gl ~ sl); Chromium, s > (gl ~ sl); Mercury, s >
a; andManganese, (gl ~ sl) > s > a. Overall, the most contaminat-
ed sources were sediment (Hg, 56%; and Cr, 53%) and animal
tissues (Cu, 43%; and Hg, 44%). Green and senescent leaves
(vegetal compartments) were responsible mainly by Mn and Cr
contamination, represented by 64% and 47%, respectively.

Considering the metal concentrations of each compartment
studied, we calculated the relative contribution of each metal
as a contamination source, depending on the number of com-
partments used by each crab species (Fig. 4 – left). The results
were Mn > Hg > (Cu ~ Cr). Figure 4 (right) shows the expect-
ed higher contamination effect of the sediment, followed by
animal tissue, while the two types of leaves were similar and
less contaminated, i. e., s > a > (gl ~ sl).

The body size of A. pisonii ranged from 18.3 to 28.3 mm
(mean ± s.d.: 22.1 ± 2.5 mm CW), while the size of

U. cordatus and G. cruentata ranged from 63.6 to 94.2 mm
CW (78.0 ± 7.6 mm CW) and 33.2 to 53.1 mm CW (44.5 ±
4.7 mm CW), respectively.

The frequency of micronucleated cells varied significantly
among species (F = 4.59; P = 0.01; Fig. 5). Aratus pisonii had
the lowest mean value (mean ± se: 0.9 ± 0.15 MN‰),
G. cruentata the highest one (1.7 ± 0.13 MN‰) (p = 0.01),
and Ucides cordatus (P = 0.19) had intermediate values (1.3
± 0.12MN‰). The MN‰ of each species was slightly higher
in winter than in summer, but these differences were not sta-
tistically significant (P > 0.05).

A three-way factorial ANOVA (Table 2) confirmed a sig-
nificant variation of frequency of micronucleated cells (MN
‰) between ‘Species’ (code ‘SP’: F = 4.59, p = 0.01) and be-
tween ‘Seasons’ (code ‘SE’: F = 8.16, P = 0.01), but not be-
tween ‘Localities’ (code ‘LO’: F = 0.74, P = 0.47). First order
interactions between treatments were not significant (F > 0.28,
p > 0.67), but there was one significant second order interac-
tion: SP x LO x SE. This can be explained by the fact that the
highest frequency of micronucleated cells was recorded in
winter, in the case ofG. cruentata, and in summer, in the case
of A. pisonii and U. cordatus it (P < 0.05).

The micronuclei frequency of G. cruentata, A. pisonii and
U. cordatus was independent of the broad climatic variation
between summer/rainy and winter/dry season. However, it
was related to the metal toxicity effect in the compartments
that are explored by each species. Corroborating our assump-
tions about the degree of exposure to metals, the results indi-
cate that G. cruentata is relatively more exposed than

Fig. 3 Potential toxicity (%) of
each metal (Cu, Cr, Mn and Hg)
per compartment (environmental:
water and sediment; and biotic /
food item: green leaves, senescent
leaves and animal), recorded at
the Juréia-Itatins Ecological
Station (JIES)
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U. cordatus and A. pisonii, since their weighted toxicity po-
tential (MCS%) were 81.5, 57.9 and 18.5%, respectively
(Fig. 6). These values are correlated with the baseline
micronuclei frequency of these species (1.7, 1.3 and 0.9
MN%, respectively), and with the number of compartments
explored by them (3, 2 and 1, respectively).

Discussion

According to the studies of Souza and Barrela (2001) and
Pinheiro et al. (2013) the Juréia-Itatins Ecological Station
(JIES) has a high conservation status, certainly due to the
low human density (only artisanal fishermen and local farmers
live there) and absence of activities like industrial and urban

areas, large ports, etc.). Our assumptions about its pristine
condition was confirmed, especially when we compared our
results with other mangroves from the central coast of São
Paulo, where anthropic effects were recorded (see Pinheiro
et al. 2013; Duarte et al. 2016, 2017). In JIES, five out of
the six metals studied were not detected in the water, when
compared with CONAMA (# 357/2005), North American
(EPA 2017) and European Council (DIRECTIVE 2008/105/
EC 2008) legislation. Metal concentrations in the sediment
were also below the reference values established by
Environmental Canada (1999). In contrast, in the mangroves
of Cubatão, also characterized in this study, higher concentra-
tions of Cu and Pb were detected in the water, indicating that
this mangrove is near the contamination sources and there is a
continuous discharge of soluble pollutants (Rainbow 2007).
Also, the concentrations of Cd and Hg in the sediment were
above the threshold considered environmentally safe.

The frequency of micronucleated cells (MN‰) of each
crab species was below three, similar to the results of
Pinheiro et al. (2013) and Duarte et al. (2016, 2017, 2019).
A narrower interval (0–1 MN‰) was reported in a review of
twenty-six fish species in pristine areas by Bolognesi and
Hayashi (2011). It seems that aquatic animals, even from dis-
tinct taxonomic groups, have similar basal values in well-
preserved environments. Nonetheless, the increase in stressors
in estuarine environments and the contamination of biotic and
abiotic compartments could affect the biochemical and phys-
iological responses of organisms and result in expressive ge-
netic damages (Monserrat et al. 2007).

Aratus pisonii, U. cordatus and G. cruentata belong to
three families of the Infraorder Brachyura (Sesarmidae,
Ocypodidae and Grapsidae, respectively), which stand
out due to the diversity of morphological, physiological
and behavioral adaptations used to maintain homeostasis
(Mantel and Farmer 1983).

Aratus pisonii is an arboreal crab that lives in tree trunks
and branches but often descends from the treetops during high
tides to hydrate and replace the water in the gill chambers.
Through this behavior it avoids the osmotic stress by desicca-
tion in warmer days (Wolcott and Wolcott 2001), controls the
body temperature (Young 1972), and optimizes respiration
and ammonia excretion (Weihrauch et al. 1999, 2004; Henry
et al. 2012). Despite the high concentration of tannins and
polyphenolic substances found in mangrove leaves, they
make up to 42% of the stomach content of Aratus pisonii
(Lacerda et al. 1991), which is thus considered as an herbi-
vore. Green leaves, however, have a higher concentration of
nutrients (Faraco and Lana 2004; Christofoletti et al. 2013).

Goniopsis cruentata is a very active grapsid crab that has
an expressive cursorial behavior on mangrove sediments. It
does not build galleries but occupies crevices among roots and
burrows of other crab species, when it needs protection from
predators. Due to its intense foraging activity, G. cruentata

Fig. 4 Total potential toxicity (%) of each metal (Cu, Cr, Mn and Hg),
considering all compartments studied (left), as well as the contamination
potential of each compartment (right) in the Juréia-Itatins Ecological
Station (JIES)

Fig. 5 Number of micronucleated cells per thousand (MN‰) in
mangrove crab species of the Juréia-Itatins Ecological Station (JIES),
per season (winter, dry season; summer, wet season; n = 15 crabs/
species/season) and in total (n = 30 crabs/species). The bars indicate the
average and the vertical lines, the standard error; ns = non-significant
(P > 0.05); different letters indicate significant differences (P< 0.05)
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can find and consume diverse food resources within its pref-
erence, i. e., decaying vegetal (leaves and propagules) and
animal tissues (Lima-Gomes et al. 2011). This species is an
opportunistic predator, which is corroborated by strong
mouthparts adapted for food maceration. Its animal preys are
captured by active predation or necrophagy (Lima-Gomes
et al. 2011). During the flooding of mangrove areas at high
tides, it climbs on the arboreal vegetation (up to ~3 m) and
descents to replace the water of its gill chambers, which, in the
case of JIES, is not contaminated by metals. According to
Ferreira et al. (2013) this species is in contact with a broad
range of compartments and is an active predator. In addition,
G. cruentata is a great osmoregulator (Zanders 1978; Zanders
and Hammer 1984) due to the good performance of their an-
tennal glands (Zanders 1978). It avoids stressful of osmotic
and heat conditions by climbing trees or sheltering among the
roots (Zanders and Hammer 1984).

Although metals are within safe concentrations in all com-
partments of JIES mangroves, we investigated whether their
merely presence could be genotoxic to crabs and
bioaccumulated through physical contact and/or feeding. In
fact, the differences in micronuclei frequency between the
three species can be explained by this hypothesis, since they
occupy different trophic positions in the mangrove, and the
concentration of contaminants is higher in the highest trophic
levels (Baumard et al. 1998; Evans et al. 2000; Bodin et al.
2008). This fact can explain the higher frequency of MN‰ in
G. cruentata (an omnivorous/generalist species) than in
A. pisonii and U. cordatus. These two last species are primar-
ily herbivores; U. cordatus forages on senescent leaves and
propagules that compose the mangrove litter (Lacerda et al.
1991; Christofoletti et al. 2013). Ucides cordatus and
G. cruentata interact more often with the mangrove sediment,
where they forage for leaves and seedlings, promoting the
recycling of nutrients (Wellens et al. 2015). The ‘uçá’-crab
is a well-known agent of sediment bioturbation, which pro-
motes the oxygenation of sediments and influences the dy-
namics and bioavailability of metals (Vilhena et al. 2013;
Araújo-Junior et al. 2016; Silva et al. 2018). Although
G. cruentata does not dig burrows in the sediment, it explores
the substrate at low tides, foraging on algae, animal carcasses,
and parts of higher plants (Lima-Gomes et al. 2011). It also
acts as a mangrove predator, eventually using the burrows of
‘uçá’-crab and tree roots as a refuge during the high tides
(Wellens et al. 2015). On the contrary, A. pisonii feeds
mainly on green leaves (herbivore) and has a reduced
contact with the sediment due to its arboreal habits
(Díaz and Conde 1989). Thus, it is safe to assume that
G. cruentata and Ucides cordatus are in contact with a
wider range of environmental compartments than
A. pisonii. In turn, the use of more contamination sources,
even at extremely low levels, explains the higher MN‰.

Table 2 Three-way factorial ANOVA used to compare the frequency
of micronucleated cells (MN‰) in relation to three sources of variation
(SE, Seasons: summer/rainy and winter/dry; SP, Species: Goniopsis
cruentata, Aratus pisonii and Ucides cordatus; and LO, Localities: three
subareas sampled), in mangroves of the Juréia-Itatins Ecological Station,
state of São Paulo, Brazil. Abbreviations: F, F-test; df, degrees of free-
dom; P, level of statistical significance; MQ, mean square; SQ, sum of
squares

Sources of Variation df SQ MQ F P

Species (SP) 2 9.60 4.800 4.593 0.01

Localities (LO) 2 1.55 0.775 0.742 0.47

Seasons (SE) 1 8.53 8.533 8.165 0.01

SP x LO 4 1.35 0.337 0.323 0.86

SP x SE 2 0.60 0.300 0.287 0.75

LO x SE 2 0.82 0.408 0.391 0.67

SP x LO x SE 4 10.15 2.538 2.428 0.05

Fig. 6 Metal contamination and crab genotoxicity. (a) Percent of metal
contamination by compartment (environmental: w, water; s, sediment;
and food items: gl, green leaf; sl, senescent leaves; a, animals). The
compartments are used by the mangrove crab species, as follow: Aratus
pisonii (w + gl), an arboreal, herbivore crab that feeds on green leaves;
Ucides cordatus (w + s + sl), a digger, herbivore crab that feeds on
senescent leaves; and Goniopsis cruentata (w + s + sl + a), a cursorial,
omnivore crab. The bars indicate the metal concentration (%) after log-
transformation and correction by toxicity and metal type, to each resource
used (see text for details). (b) Baseline frequency of micronucleated cells
in mangrove crab species in the Juréia-Itatins Ecological Station (JIES),
Brazil. The vertical lines indicate the mean and standard error. In both (a)
and (b), different letters indicate significant differences (P < 0.05)
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Seasonal differences in biological responses, indicated by
biomarkers, are known in several aquatic organisms (Bodin
et al. 2004; Hagger et al. 2010; Cenov et al. 2018). However,
most of these studies were done in temperate regions, where
seasonal variation is more pronounced than in the tropical
region of Brazil. The higher frequency of MN‰ in
G. cruentata and Ucides cordatus in winter (compared to
A. pisonii) indicates a greater sensitivity to stress caused by
natural physical and biochemical variability in their habitats.
According to studies on fishes (see Hughes and Hebert 1991;
and Amado et al. 2006), the activity of DNA repair enzymes
may decrease during winter, leading to an increased chromo-
somal damage. Also, the reproductive cycle can influence the
antioxidative defense mechanisms, leading to more sublethal
effects during reproduction. Similar results have been found in
mussels (Bocchetti et al. 2008), where higher MN‰ values
were recorded in late autumn. The absence of species-specific
seasonal differences in MN‰ indicates a reduced seasonal
effect in the tropical region.

The study of sentinel species and biomarkers in pristine
environments brings relevant information that helps to un-
derstand their conservation status. These studies are espe-
cially important in the case of widely impacted coastal
ecosystems such as mangroves. Therefore, the study of
three endemic and abundant species of Brazilian man-
groves, with reduced vagility and different lifestyles, con-
tributes to the better understanding of the conservation of
western Atlantic mangroves. We propose that mangroves
can be considered as well-preserved (or pristine) when the
mean MN‰ of two very different species — i. e., one
that uses few compartments (like A. pisonii), and another
who uses many (like G. cruentata) — is <1 and < 2 MN
‰, respectively. Similar values (MN‰ < 3) were recorded
by Duarte et al. (2016) in U. cordatus in six mangrove
areas ranging from pristine to impacted. In their study, a
MN‰ < 3 indicated that an area is ‘Probably Not
Impacted’ (PNI), that is, well-preserved. We propose that
the assessment and monitoring of mangrove environmental
quality can be minimally based on two sentinel species.
This approach allows the comparison of different areas,
considering specific morpho-physiological adaptations
(Pinheiro and Fiscarelli 2001), and pollutant pathways
and their kinetics in these organisms (Luoma and
Rainbow 2008; Duarte et al. 2017, 2019; Ortega et al.
2016, 2017). These procedures optimize the performance
(Bruner et al. 2001) and effectiveness of monitoring
(Chape et al. 2005).

Long-term sublethal damage caused by pollutants may be
irreversible in species with higher levels of exposure. The
genotoxicity can be influenced by body size (individual age
vs. exposition time), contamination levels in the
environmental/food compartments used, habitat preference,
behavior, andmorpho-physiological characteristics of species.

Thus, our assessment can be used as a guide in the environ-
mental diagnosis and development of management strategies
to be applied to mangroves. It is a useful tool to categorize the
conservation status of mangroves along the western Atlantic
coast, where these three crab species occur.

We presented evidence that metals, even at concentrations
considered environmentally safe, may influence the baseline
frequency of micronucleated cells in crabs of well-preserved
mangroves. Our results can be used to build a protocol that,
after a short training by different organizations (governmental
or non-governmental), can be employed in the monitoring and
conservation of western Atlantic mangroves. Our approach
represents a new protocol, which can be used to better under-
stand the potential toxicity by metals in mangrove areas.

Conclusions

The assumed pristine condition of Juréia-Itatins Ecological
Station was confirmed, based on the quantification of metal
concentrations in environmental compartments. The mean
number of micronucleated cells per thousand (MN‰) of three
mangrove crab species was <3 MN‰, which is expected in
pristine environments, according to the literature. The overall
mean MN‰ was higher in winter than in summer, indicating
a higher genotoxicity in this period. However, there were no
differences when seasonality was compared within each spe-
cies, probably due to lack of striking differences between
these two seasons in the tropical region. Metals, even at safe
concentrations in environmental compartments, can influence
the baseline micronuclei frequency of crab species in pristine
mangroves. The longer the species have contact with a broad
range of environmental compartments and diets, the higher the
frequency of micronucleated cells. Thus, crab species that
interact more with the sediment (where contaminants usually
are proportionally more concentrated), such Goniopsis
cruentata and Ucides cordatus, are suitable species to be used
as sentinels of mangrove environmental quality. Our results
provide new insights on the baseline micronuclei frequency of
crab species from pristine mangroves, which may support the
management of mangrove ecosystems.
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